ISSN: 2583-7354

On NSBc Continuous Functions in Nano Topological Spaces

📴 R.Raman¹, ២ S.Pious Missier², ២ E.Sucila³

¹Research Scholar, (Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, India. ²Head & Associate Professor(Rtd), Department of Mathematics, Don Bosco College of Arts and Science, Keela Eral, Thoothukudi, Tamilnadu, India.

³Associate Professor, Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti, India. DOI: <u>https://doi.org/10.70333/ijeks-03-12-016</u>

*Corresponding Author: rramanram1988@gmail.com

Article Info:- Received : 26 November 2024Accepted : 25 December 2024Published : 30 December 2024

This paper introduces a new class of continuous functions, termed nano Sb-continuous functions (N°-cts), in nano topological spaces (N°T spaces). This study explores their fundamental properties, characterizations, and relationships with other generalized forms of continuity. We define and analyze the structural behavior of N°-Sb continuous functions, extending the existing framework of nano topology. Several new propositions are established to demonstrate their role in preserving topological properties. Furthermore, the relationships between N°-semi open sets, N°-b-open sets, and N°-Sb-continuous functions are discussed in detail. The results provide a foundation for further studies in generalized continuity within

nano topological structures, offering new insights into the field of mathematical topology. The research contributes to advancing theoretical developments and potential applications in areas that utilize nano topology, such as fuzzy logic, rough set theory, and computational topology.

Keywords: №-Semi Open-set, №-b-Open-set, №-Sb-Continuous Function.

© 2024 R.Raman, S.Pious Missier and E. Sucila., This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

1. INTRODUCTION

The study of nano topology was started by **M. Lellis Thivagar et al [8]** with regard to a subset X of a universe that is described in terms of lower, upper and boundary approximations of X. He additionally described №-interior (briefly, №int) and №-closure (briefly, №-cl) in №T space. Andrijevic [1] presented and studied a category of generalized open sets in a topological space referred to as b-open sets. Further C. Indirani et al [4] created and studied №-b-open sets (№ bo sets) in nano topological spaces (№T Spaces). B*c* open sets were first introduced in topological spaces by Hariwan Z. Ibrahim [6].

In this research paper, a new kind of N $^{\circ}$ ctsfunctions referred to as N $^{\circ}$ -Sbc cts-functions in N $^{\circ}$ T spaces is presented and its characteristics are examined.

2. PRELIMINARIES

Definition 2.1 [8] Let $\tilde{U}N$ be a non-empty finite set of elements called the universal set and \mathcal{R}_N represents an equivalence relation on $\tilde{U}N$ referred as the indiscernibility relation. Elements in the

same equivalence class are known as indiscernible with each another. The pair ($\tilde{U}N$, $\mathcal{R}N$) is known as the approximation space. Let $X \subseteq \tilde{U}N$.

(i) The lower approximation of X with respect to \mathcal{R}_N is the collection of all elements which can be for certain classified as X with respect to \mathcal{R}_N and it is represented by $L_{\mathcal{R}}(X)$. That is, $L_{\mathcal{R}}(X) = \bigcup_{X \in \tilde{U}} \{ \mathcal{R}_X : \mathcal{R}_X \subseteq X \}$ where \mathcal{R}_X is the equivalence class determined by $X \in \tilde{U}$.

(ii) The upper approximation of X with respect to \mathcal{R}_N is the collection of all elements, which can be possibly classified as X with respect to \mathcal{R}_N and it is represented by $U_R(X)$. That is $U_R(X) = \bigcup_{X \in U} \{\mathcal{R}_X : \mathcal{R}_X \cap X \neq \emptyset\}$.

(iii) The boundary region of X with respect to \mathcal{R}_N is the set of all elements, that can be classified neither as X nor as not-X with respect to \mathcal{R}_N and it is represented by $\mathcal{B}_{\mathcal{R}}(X)$. That is, $\mathcal{B}_{\mathcal{R}}(X) = \mathcal{U}_{\mathcal{R}}(X) - \mathcal{L}_{\mathcal{R}}(X)$.

Definition 2.2 [8] Let \tilde{U}_N be an universal set and \mathcal{R}_N represent an equivalence relation on \tilde{U}_N . Then $\mathbb{N}_R^{\circ}(X) = \mathbb{N}^{\circ T} = \{\tilde{U}_N, \emptyset_N, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq \tilde{U}_N$. Then, $\mathbb{N}_R^{\circ}(x)$ satisfies the axioms listed below.

(i) \tilde{U}_N and $\emptyset_N \in \mathbb{N}_R^{\circ}(x)$.

(ii) The union of the elements of any sub collection of $\mathbb{N}_{R}^{\circ}(x)$ is in $\mathbb{N}_{R}^{\circ}(x)$.

(iii) The intersection of the elements of any finite sub- collection of $\mathbb{N}^{\mathbb{Q}}_{R}(x)$ is in $\mathbb{N}^{\mathbb{Q}}_{R}(X)$. Therefore, $\mathbb{N}^{\mathbb{Q}}_{R}(x)$ is a topology on $\tilde{U}_{\mathbb{N}}$ named as $\mathbb{N}^{\mathbb{Q}}$ - topology $(\mathbb{N}^{\mathbb{Q}^{\mathrm{T}}})$ on $\tilde{U}_{\mathbb{N}}$ with respect to X. We call $(\tilde{U}_{\mathbb{N}}, \mathbb{N}^{\mathbb{Q}}_{R}(x))$ (or) $(\tilde{U}_{\mathbb{N}}, \mathbb{N}^{\mathbb{Q}^{\mathrm{T}}})$ as the $\mathbb{N}^{\mathbb{Q}}$ TS. The elements of $\mathbb{N}^{\mathbb{Q}^{\mathrm{T}}}$ are called $\mathbb{N}^{\mathbb{Q}}$ -open sets (briefly, $\mathbb{N}^{\mathbb{Q}}$ -open sets). The complement of nano open sets are $\mathbb{N}^{\mathbb{Q}}$ - closed sets (briefly, $\mathbb{N}^{\mathbb{Q}}$ -closed sets).

Example 2.3 [8] Let $\tilde{U}_N = \{w_1, w_2, w_3, w_4\}$ with $\tilde{U}_N / \mathcal{R}_N = \{\{w_1\}, \{w_2\}, \{w_3, w_4\}\}$ and $X = \{w_1, w_3\}$ $\subset \tilde{U}_N$. Then $N_R(x) = N^{\circ T} = \{\tilde{U}_N, \emptyset, \{w_1\}, \{w_3, w_4\}, \{w_1, w_3, w_4\}\}$. **Remark 2.4** [8] If $N_R(x) = \mathbb{N}^{\mathbb{Q}^T}$ is the nano topology on \tilde{U}_N with respect to X and B_N is a nano subset of $\mathbb{N}^{\mathbb{Q}}$ T Space (\tilde{U}_N , $\mathbb{N}^{\mathbb{Q}^T}$), then $B_N = \{ \tilde{U}_N, L_R(X), B_R(X) \}$ is referred to as the basis for $N_R(X)$.

Definition 2.5 [8] If $(\tilde{U}_N, N^{\Omega T})$ is a NTS with respect to *X* where

 $X \subseteq \tilde{U}_N$ and if A_N is a nano subset in N^oTS and if $A_N \subseteq \tilde{U}_N$, then

- (1) TheN^Q- interior of A_N is defined as the union of all N^Q-O subsets of A_N and it is denoted by N^Q int (A_N). That is, N^Q- int (A_N) is the largest N^Q-O subset of A_N.
- (2) The Nº- closure of A_N is defined as the intersection of all Nº-C sets containing A_N and it is denoted by Nº- cl (A_N). That is, Nº- cl (A_N) is the smallest Nº-C set containing A_N.

Definition 2.6: Let $(\tilde{U}_N, N^{\circ T})$ be a N°TS and $A_N \subseteq \tilde{U}_N$. Then A_N is called

(1) N^o-semi open set (N^o-SO set) [8] if $A_N \subseteq N^o$ cl[N^o int (A_N)] and N^o-semi- closed (N^o-SC set) [7] if N^o-int [N^o-cl (A_N)] $\subseteq A_N$.

(2) N^o-pre open set (N^o-PO set) [8] if $A_N \subseteq N^o$ -int [N^o- cl (A_N)] and N^o- pre-closed (N^o-PC set) [7] if N^o- cl [N^o- int (A_N)] $\subseteq A_N$.

(3) $\mathbb{N}^{\underline{o}} \cdot \boldsymbol{\theta}$ open set $(\mathbb{N}^{\underline{o}} \cdot \boldsymbol{\theta} \cdot OS)$ [3] if for each $x \in A_{\mathbb{N}}$, there exists a $\mathbb{N}^{\underline{o}}$ open set $(\mathbb{N}^{\underline{o}} \cdot OS)$ $G_{\mathbb{N}}$ such that $x \in G_{\mathbb{N}} \subseteq \mathbb{N}^{\underline{o}} \cdot cl$ $(G_{\mathbb{N}}) \subseteq A_{\mathbb{N}}$.

(4) $\mathbb{N}^{\mathbb{P}} \cdot \boldsymbol{\theta}$ -semiopen ($\mathbb{N}^{\mathbb{P}} \cdot \boldsymbol{\theta}$ -SO) [3] if for each $x \in A_{\mathbb{N}}$, there exists a $\mathbb{N}^{\mathbb{P}}$ -semi open set ($\mathbb{N}^{\mathbb{P}}$ -SO set) $G_{\mathbb{N}}$ such that $x \in G_{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{P}}$ -cl ($G_{\mathbb{N}}$) $\subseteq A_{\mathbb{N}}$.

(5) N^o-regular open set (N^o-RO set) [8] if $A_N = N^{o}$ int [N^o-cl (A_N)] and N^o- regular-closed (N^o-RC set) [7] if N^o -cl [N^o- int (A_N)] = A_N.

N^Q-SO(\tilde{U}_N , X), N^Q-PO(\tilde{U}_N , X), N^Q- $\boldsymbol{\theta}$ O(\tilde{U}_N , X), N^Q- $\boldsymbol{\theta}$ SO(\tilde{U}_N , X) and N^Q-RO(\tilde{U}_N , X) respectively denotes the families of all nano semi-open(N^Q-SO), nano pre-open(N^Q-PO), nano $\boldsymbol{\theta}$ -open(N^Q- $\boldsymbol{\theta}$ O) nano $\boldsymbol{\theta}$ semi-open(N^Q- $\boldsymbol{\theta}$ SO) and nano regular-open(N^Q-RO) subsets of (\tilde{U}_N , X).

Definition 2.7 Let $(\tilde{U}_N, N_R(X))$ and $(\tilde{V}_N, N_R(y))$ be two NoTS. A function

- $\eta: (\tilde{U}_N, N_R(X)) \to (\tilde{V}_N, N_R(y))$ is called
 - (1) Nº-cts [11] if η^{-1} (B_N) is Nº open set (Nº-OS) in \tilde{U}_N for each Nº OS B_N in \tilde{V}_N .

- (2) Nº-semi-cts [10] if η⁻¹ (B_N) is Nº semi OS (Nº-SO) in Ũ_N for each Nº OS B_N in Ũ_N.
- (3) N^o-pre-cts [10] if $\eta^{-1}(B_N)$ is N^o pre OS (N^o-PO) in \tilde{U}_N for every N^o OS BN in \tilde{V}_N ..
- (4) N^{\circ} b-cts [4] if η^{-1} (B_N) is N^{\circ} b-OS (N^{\circ}-b-OS) in \tilde{U}_N for each N^{\circ} OS B_N in \tilde{V}_N .

Definition 2.8 [3] Let us consider N^{\circ}TS (\tilde{U}_N, N° T) with the set $A_N \subseteq \tilde{U}_N$. Then the set A_N is known as Nano-b-open set (in brief, N^{\circ} b-O set) if $A_N \subseteq N^{\circ}$ cl (N^{\circ} int (A_N)) \cup N^{\circ} int (N^{\circ} cl (A_N)). The complement of the N^{\circ} b-OS is known as nano- b-CS (briefly, N^{\circ} b-C set).

Example 2.9 [3] Let $\tilde{U}_N = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ with $\tilde{U}_N / R = \{\omega_1\}, \{\omega_3\}, \{\omega_2, \omega_4\}$ and $X = \{\omega_1, \omega_2\}$. Then $N^{\Omega}T = \{\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_4\}\}$ and N^{Ω} b-open sets are $\tilde{U}_N, \emptyset_N, \{\omega_1\}, \{\omega_2\}, \{\omega_4\}, \{\omega_1, \omega_2\}, \{\omega_1, \omega_3\}, \{\omega_1, \omega_4\}, \{\omega_2, \omega_4\}, \{\omega_1, \omega_2, \omega_3\}, \{\omega_1, \omega_2, \omega_4\}, \{\omega_2, \omega_3, \omega_4\}.$

3. NANO SB^c-CONTINUOUS FUNCTIONS

Definition 3.1 Let AN be a subset of a N^o-TS ($\tilde{U}N$, N^oT). Then the set AN is called as N^o b^c-O set if for every $\stackrel{\varkappa}{\leftarrow} AN \stackrel{\leftarrow}{\leftarrow} N^o$ -BO($\tilde{U}N$), there exists a N^o-CS $\stackrel{H}{\rightarrow} N$ such that $\stackrel{\varkappa}{\leftarrow} \stackrel{H}{\rightarrow} N \stackrel{\leftarrow}{\leftarrow} AN$.

The family of all nano b^{c} -open subsets (N^o b^{c} -OS) of a N^o-T space (ŨN, N^oT) is denoted by N^o B^c-O (ŨN, N^oT) (briefly N^o B^c-O (ŨN).

Example 3.2 Let $\tilde{U} = \{ \omega 1, \omega 2, \omega 3, \omega 4 \}$ with $\tilde{U}/^{R} = \{ \{ \omega 1 \}, \{ \omega 3 \}, \{ \omega 2, \omega 4 \} \}$ and $X = \{ \omega 1, \omega 2 \}$. Then ${}^{\tau}N = \{ \tilde{U}, {}^{\emptyset}, \{ \omega 1 \}, \{ \omega 1, \omega 2, \omega 4 \}, \{ \omega 2, \omega 4 \} \}$. Then the N^o-closed sets are $\tilde{U}, {}^{\varphi}, \{ \omega 2, \omega 3, \omega 4 \}, \{ \omega 3 \}$ and $\{ \omega 1, \omega 3 \}$. Then the collection of all N^o b-open sets are N^o-bO(\tilde{U}) = $\{ \tilde{U}, {}^{\emptyset}, \{ \omega 1 \}, \{ \omega 2 \}, \{ \omega 4 \}, \{ \omega 1, \omega 2 \}, \{ \omega 1, \omega 3 \}, \{ \omega 1, \omega 4 \}, \{ \omega 2, \omega 4 \}, \{ \omega 1, \omega 2, \omega 3 \}, \{ \omega 1, \omega 2, \omega 4 \}, \{ \omega 2, \omega 3 \}, \{ \omega 1, \omega 2, \omega 4 \}, \{ \omega 2, \omega 3 \}$

Definition 3.3 A function $\eta: (\tilde{U}N, {}^{N_{R}}({}^{x})) \to (\tilde{V}N, {}^{N_{R}}(y))$ with respect to X and y respectively is called N^o Semi b^c-continuous if for each N^o-SO set BN of y containing $\eta(x)$, there exists a N^o-B^c-OS AN of X containing x such that $\eta(AN) \stackrel{c}{=} N^{o}$ -cl (BN

). If η is Nº-SB^C-continuous at every point of $\tilde{U}N$, then it is called Nº-SB^C-cts .

Example 3.4 Let $\tilde{U}N = \{ \omega_1, \omega_2, \omega_3, \omega_4 \}$ with $\tilde{U}N / R = \{ \{ \omega_1, \omega_2 \}, \{ \omega_3 \}, \omega_4 \} \}$ and $X = \{ \omega_1, \omega_3 \}$. Then NT $N_R(X) = \{ \tilde{U}N, \emptyset, \{ \omega_3 \}, \{ \omega_1, \omega_2, \omega_3 \}, \{ \omega_1, \omega_2 \} \}$. No-CS $\begin{pmatrix} x \\ \end{pmatrix} = \{ \tilde{U}N, \emptyset, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_4 \}, \{ \omega_3, \omega_4 \} \}$. Then NobO $\begin{pmatrix} x \\ \end{pmatrix} = \{ \tilde{U}N, \emptyset, \{ \omega_1 \}, \{ \omega_2 \}, \{ \omega_4 \}, \{ \omega_1, \omega_2 \}, \{ \omega_1, \omega_3 \}, \{ \omega_1, \omega_4 \}, \{ \omega_2, \omega_4 \}, \{ \omega_1, \omega_2, \omega_3 \}, \{ \omega_1, \omega_4 \}, \{ \omega_2, \omega_4 \}, \{ \omega_1, \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_4 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_4 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_2, \omega_3 \}, \{ \omega_1, \omega_2, \omega_4 \}, \{ \omega_1, \omega_4 \}, \{ \omega_1, \omega_4 \}, \{ \omega_1, \omega_4 \}, \{ \omega_1, \omega_4 \}, \{ \omega_4, \omega_4 \}, \{ \omega_4, \omega_4 \}, \{ \omega_4 \}, \{$

 $\eta(\omega 3) = z1, \eta(\omega 4) = z3$. Then η is N^o-Sb^c-cts.

Proposition 3.4 A function $\eta : (\tilde{U}_N, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o-semi-bc-cts if and only if for each \varkappa in X and each N^o-regular CS F_N of y containing $\eta(\varkappa)$, there exists a N^o-bc-OS A_N of X containing \varkappa such that $\eta(A_N) \subset F_N$.

Proof: Suppose that every N^o-regular CS F_N of y containing $\eta(\varkappa)$, there exists a N^o-bc-OS A_N of \varkappa containing \varkappa such that $\eta(A_N) \subset F_N$. Let B_N be a N^o-SO set in y containing $\eta(\varkappa)$, so N^o-Cl (B_N) = F_N is N^o-RC, then there exists a N^o-bc-OS A_N of \varkappa containing \varkappa such that $\eta(A_N) \subset F_N = N^o$ -Cl (B_N). Hence η is N^o-semi-bc-cts.

Conversely, let $\varkappa \in x$ and let F_N be any N^o-RC set of y containing $\eta(\varkappa)$. Since η is N^o-Sbc-cts, then there exists a N^o-bc-OS A_N of \varkappa containing \varkappa such that $\eta(A_N) \subseteq N^o$ -Cl $(F_N) = F_N$.

Proposition 3.5 A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o-Sbc-cts if and only if for every $x \in X$ and each N^o- θ -semi-OS H_N of y containing $\eta(x)$, there exists a N^o-bc-open set G_N of X containing x such that $\eta(G_N) \subseteq H_N$.

Proof : Let $\varkappa \in X$ and \tilde{V} be any N^o-SO set of y containing $\eta(\varkappa)$. So N^o-cl(H_N) is a N^o- θ semi-open set of y containing $\eta(\varkappa)$. Then there exists a N^o-bc-open set G_N of X containing \varkappa such that $\eta(G_N) \subset N^o$ -cl-(H_N). Hence η is N^o-Sbc-continuous.

Conversely, let H_N be any $N^{\underline{o}}$ - θ semi-open set of y containing $\eta(\varkappa)$, then there exists a $N^{\underline{o}}$ -semi-open set B_N of y such that $\eta(\varkappa) \in B_N \subset N^{\underline{o}}$ -Cl(B_N) $\subset H_N$. Since η is $N^{\underline{o}}$ -Sbc-continuous, then there exists a $N^{\underline{o}}$ -bc-open set G_N of \varkappa containing \varkappa such that $\eta(G_N) \subset B_N \subset H_N$.

Proposition 3.6 : For a function $\eta : (\tilde{U}, N_R(x)) \rightarrow (\tilde{V}, N_R(y))$, the following statements are equivalent.

1. η is N^o-Sbc-continuous.

2. For each $\varkappa \in X$ and each N^o-semi-open set H_N of y containing $\eta(\varkappa)$, there exists a N^o-bc-open set G_N in X containing \varkappa such that $\eta(G_N) \subseteq N^o$ -PCl(H_N). 3. For each $\varkappa \in X$ and each N^o-regular closed set F_N of y containing $\eta(\varkappa)$, there exists a N^o-bc-open set G_N in X containing \varkappa such that $\eta(G_N) \subseteq F_N$.

4. For each $\varkappa \in X$ and each N^{\circ}- θ semi-open set H_N of y containing $\eta(\varkappa)$, there exists a N^{\circ}-bc-open set G_N in X containing \varkappa such that $\eta(G_N) \subset H_N$.

Proof:

(1) \Rightarrow (2). Since N^o-Cl(H_N) = N^o-pCl(H_N) for every H_N \in N^o-SO(\tilde{V} , $\eta(\varkappa)$).

(2) \Rightarrow (3). Let $\varkappa \in X$ and let F_N be any N^o-regular closed set F_N of y containing $\eta(\varkappa)$.

Then for each $\eta(\varkappa) \in F_N$ there exists a N^o-semiopen set H_N containing $\eta(\varkappa)$ such that H_N $\subset F_N$. Then there exists a N^o-bc-open set G_N in *X* containing \varkappa such that $\eta(G_N) \subset H_N \subset F_N$.

(3) \Rightarrow (4). Let $\varkappa \in X$ and let H_N be any $N^{\varrho} \cdot \theta$ semiopen set of y containing $\eta(\varkappa)$. Then for each $\eta(\varkappa) \in$ H_N , there exists a N^{ϱ} regular closed set F_N containing $\eta(\varkappa)$ such that $F_N \subset H_N$. By (3), there exists a N^{ϱ} bc-open set G_N in X containing \varkappa such that $\eta(G_N) \subset F_N \subset H_N$.

(4) \Rightarrow (1). It is already proved in Theorem 3.5.

Proposition 3.7: For a function $\eta : (\tilde{U}, N_R(x)) \rightarrow (\tilde{V}, N_R(y))$, the following statements are equivalent. 1. η is N^o semi-bc-cts.

2. η −1 (N^o Cl(BN)) is N^o bc-OS in ^X, for each N^o-SO set BN in y.

3 η −1 (Nº Int(^{*F*}N)) is Nº bc-CS in ^{*X*}, for each Nº-SC set ^{*F*}N in v.

4. η −1 (BN) is N^o bc-CS in ^X, for each N^o-RO set BN of y.

5. η −1 (^{*F*}N) is N^o bc-OS in ^{*X*}, for each N^o-RC set F_{N} of v.

6. η −1 (BN) is N^obc-OS in X , for each N^o- $^{\theta}$ SO set BN of y.

7. η −1 (^{*F*}N) is N^o bc-CS in ^{*X*}, for each N^o-^{θ}SC set ^{*F*}N of y.

Proof:

(1) ⇒ (2). Let B_N be any N^o semi-OS in y. To prove that η^{-1} (N^o Cl(B_N)) is N^o bc-OS in X. Let × ∈ η^{-1} (N^o Cl(B_N)). Then η (×) ∈ N^o Cl(B_N) and N^o Cl(B_N) is a N^o regular CS in y. Since η is N^o semi-bc-cts. Then by Theorem 3.4, there exists a N^o bc OS A_N of X containing x such that $\eta(A_N) \subseteq N^o$ Cl(B_N), Which implies that x ∈ A_N ⊂ η^{-1} (N^o Cl(B_N)). Therefore, η^{-1} (N^o Cl(B_N)) is N^o bc OS in X.

(2) \Rightarrow (3). Let F_N be any N^o semi-CS of y. Then y \ F_N is a N^o semi-OS of y. By (2), η^{-1} (N^o Cl(y \ F_N)) is N^o bc-OS in X and η^{-1} (N^o Cl(y \ F_N)) = η^{-1} (y \N^o int(F_N)) = $X \setminus \eta^{-1}$ (N^o int(F_N)) is N^o bc-OS in X and hence η^{-1} (N^o int(F_N)) is N^o bc-CS in X.

(3) \Rightarrow (4). Let B_N be any N° regular open in y. Then B_N is N° semi-closed in y and N° Int $(B_N) = B_N$. By (3), $\eta^{-1}(N^{\circ}$ Int $(B_N)) = \eta^{-1}(B_N)$ is N° bc closed set in *X*.

(4) \Rightarrow (5). Let F_N be any N^o regular closed set of y. Then y \ F_N is N^o regular open set of y. By (4), $\eta^{-1}(y \setminus F_N)$ is N^o bc-closed set in X and $\eta^{-1}(y \setminus F_N = X \setminus f - 1(F_N)$. Therefore $\eta^{-1}(F_N)$ is N^o bc-open set in X.

(5) \Rightarrow (6). It follows from the fact that any N^o θ semi-open set is a union of N^o regular closed sets.

(6) \Rightarrow (7). It is entirely analogous to part (4) \Rightarrow (5) and the proof is obvious.

Proposition 3.8: For a function η : $(\tilde{U}, N_R(x)) \rightarrow (\tilde{V}, N_R(y))$, the following statements are equivalent.

1. η is Nº semi-bc-continuous.

2. N^o bc-Cl $(\eta^{-1}(B_N)) \subset \eta^{-1}(N^o Int(Cl(B_N)))$, for each N^o PO set B_N of y. 3. $\eta - 1(N^o Cl(N^o Int(FN))) \subset N^o bc Int(\eta - 1(FN)))$,

for each № PC set **F**N of y.

Proof :

(1) ⇒ (2). Let B_N be any N° pre-open set of y. Then $B_N \subseteq N^{\circ}$ Int(N° Cl(B_N)) and N° Int(N° Cl(B_N)) is N° regular open set in y. Since η is N° semi-bc continuous, by Theorem 3.7, (4), $\eta^{-1} N^{\circ}$ Int(N° Cl(B_N))) is N° bc-closed set in X and hence we obtain that N° bc Cl(η^{-1} (B_N)) $\subseteq \eta^{-1}$ (N° Int(N° Cl(B_N)).

(2) \Rightarrow (3). Let F_N be any N^o pre-closed set of y. Then Y\ F_N is N^o pre-open set of y and by (2), we have N^o-bcCl(η^{-1} (y \ F_N)) $\subset \eta^{-1}$ (N^o Int(Cl(y \ F_N))) $\Leftrightarrow X \setminus N^o$ -bc Int(η^{-1} (F_N) $\subset \eta^{-1}$ (y \N^o Cl(N^o Int(F_N))) $\Leftrightarrow X \setminus N^o$ -bc Int(η^{-1} (F_N)) $\subset X \setminus \eta^{-1}$ (N^o Cl(N^o Int(F_N))). Therefore, η^{-1} (N^o Cl(N^o Int(F_N))) $\subset N^o$ -bc Int(η^{-1} (F_N)).

(3) \Rightarrow (1). Let B_N be any N^o RO set of y. Then Y\B_N is N^o pre-open set of y. Then we have N^o bc Cl(η^{-1} (B_N)) $\subset \eta^{-1}$ (N^o Int(N^o Cl(B_N)) = η^{-1} (B_N). Hence η^{-1} (B_N) is N^o-bc closed set in *X* and hence by theorem 3.7,(4), η is N^o-Sbc continuous.

Proposition 3.9: For a function $\eta : (\tilde{U}, N_R(x)) \rightarrow (\tilde{V}, N_R(y))$, the following statements are equivalent.

1. η is № semi-bc-continuous.

2. N^o bc-Cl $(\eta^{-1}(B_N)) \subset \eta^{-1}(N^o SCl(B_N))$, for each N^o PO set B_N of y.

3. $\eta^{-1}(\mathbb{N}^{\circ} \operatorname{SInt}(F_{\mathbb{N}}))) \subseteq \mathbb{N}^{\circ}$ bc $\operatorname{Int}(\eta^{-1}(F_{\mathbb{N}}))$, for each \mathbb{N}° PC set $F_{\mathbb{N}}$ of y.

Proof:

(1) \Rightarrow (2). Let B_N be any N° pre-open set of y. Since N° -SCl(B_N) = N° Int(N° Cl(B_N) for each B_N of N° PO(y), it follows that $B_N \subset N^{\circ}$ Int(N° Cl(B_N)) and N° Int(N° Cl(B_N)) is N° regular open set in y. Since η is N° semi-bc continuous, by Theorem 3.7, (4), η^{-1}

Nº Int(Nº Cl(B_N))) is Nº bc-closed set in X and hence we obtain that Nº bc Cl(η⁻¹ (B_N)) ⊂ η⁻¹ (Nº Int(Nº Cl(B_N)).

(2) \Rightarrow (3). Let F_N be any N^o pre-closed set of y. Then Y\ F_N is N^o pre-open set of y and by (2), we have N^o-bcCl(η^{-1} ($y \setminus F_N$)) $\subset \eta^{-1}$ (N^o Int(Cl($y \setminus F_N$))) $\Leftrightarrow X \setminus N^o$ -bc Int(η^{-1} (F_N) $\subset \eta^{-1}$ ($y \setminus N^o$ Cl(N^o Int(F_N))) Since N^o-SInt(F_N) $= N^o$ Cl(N^o Int(F_N)) \Leftrightarrow $X \setminus N^o$ -bc Int(η^{-1} (F_N)) $\subset X \setminus \eta^{-1}$ (N^o Cl(N^o Int(F_N))). Therefore, η^{-1} (N^o Cl(N^o Int(F_N))) $\subset N^o$ -bc Int(η^{-1} (F_N)).

(3) \Rightarrow (1). Let B_N be any N^{Ω} RO set of y. Then $Y \setminus B_N$ is N^{Ω} pre-open set of y. Then we have N^{Ω} bc $Int(\eta^{-1}(B_N)) \subset \eta^{-1}(N^{\Omega} cl(N^{\Omega} Int(B_N)) = \eta^{-1}(B_N)$. Hence $\eta^{-1}(B_N)$ is N^{Ω} -bc closed set in X and hence by theorem 3.7,(4), η is N^{Ω} -Sbc continuous.

Proposition 3.10: A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o Sbc-continuous if and only if $\eta^{-1}(B_N) \subset N^o$ -bc Int $(\eta^{-1}(N^o cl(B_N))$ for each N^o SO set B_N of y.

Proof: Let B_N be any N^Q SO set of y. Then B_N ⊂ N^Q-cl (B_N) and N^Q-cl (B_N) is N^Q RC set in y. Since η is N^Q-Sbc continuous, by Theorem 3.7,(5), η⁻¹(N^Q cl(B_N)) is N^Q-bc open set in X and hence η⁻¹(B_N) ⊂ η⁻¹(N^Q cl(B_N)) = N^Q-bc Int (η⁻¹(N^Q cl(B_N)). Conversely, let B_N be any N^Q RC set of y. Then B_N is N^Q SO set of y. Then η⁻¹(B_N) ⊂ N^Q-bc Int (η⁻¹(N^Q cl(B_N)) = N^Q-bc Int (η⁻¹(N^Q (B_N)). Then η⁻¹(B_N) is N^Q-bc OS in X.Hence by Theorem 3.7, η is N^Q semi-bc-continuous.

Proposition 3.11: A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o Sbc-continuous if and only if $\eta^{-1}(B_N) \subset N^o$ -bc Int $(\eta^{-1}(N^o Pcl(B_N))$ for each N^o SO set B_N of y.

Proof: Let B_N be any N° SO set of y. Then $B_N \subseteq N^{\circ}$ -cl (B_N) and N° -cl (B_N) is N° RC set in y. Since η is N° -Sbc continuous , by Theorem 3.7,(5) and Since N° -Cl(B_N) = N° -pCl(B_N), we have $\eta^{-1}(N^{\circ} Pcl(B_N))$ is N° -bc open set in X and hence $\eta^{-1}(B_N) \subseteq \eta^{-1}(N^{\circ} Pcl(B_N)) = N^{\circ}$ -bc Int ($\eta^{-1}(N^{\circ} Pcl(B_N))$.

Conversely, let B_N be any N° RC set of y. Then B_N is N° SO set of y. Then $\eta^{-1}(B_N) \subset N^{\circ}$ -bc Int $(\eta^{-1}(N^{\circ} Pcl(B_N)) = N^{\circ}$ -bc Int $(\eta^{-1}(N^{\circ} (B_N))$. Then $\eta^{-1}(B_N)$ is N° -bc OS in *X*. Hence by Theorem 3.7, η is N° semi-bc-continuous.

Proposition 3.12 : A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o Sbc-continuous if and only if N^o-bc Cl $(\eta^{-1}(N^o \operatorname{Int}(F_N)) \subset \eta^{-1}(F_N)$ for each N^o SC set F_N of y.

Proof: Let F_N be any N^{Ω} SC set of y. Then N^{Ω} Int(N^{Ω} cl (F_N)) $\subset F_N$. and N^{Ω} -cl (F_N) is N^{Ω} RC set in y. Since η is N^{Ω} -Sbc continuous, by Theorem 3.7, we have $\eta^{-1}(N^{\Omega}$ cl(F_N)) is N^{Ω} -bc open set in X and hence N^{Ω} -bc Cl ($\eta^{-1}(N^{\Omega}$ Int(F_N)) $\subset \eta^{-1}(F_N)$. Conversely, let F_N be any N^{Ω} RC set of y. Then F_N is N^{Ω} SC set of y. Then N^{Ω} -bc Cl ($\eta^{-1}(N^{\Omega}$ Int(F_N)) \subset

 $\eta^{-1}(F_N)$. Then $\eta^{-1}(F_N)$ is N^o-bc OS in *X*. Hence by Theorem 3.7, η is N^o semi-bc-continuous.

Proposition 3.13: A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o Sbc-continuous if and only if $\eta^{-1}(F_N)$) $\subset N^o$ -bc Cl ($\eta^{-1}(N^o$ Int((N^o Cl (F_N)) for each N^o PO set F_N of y.

Proof: Let F_N be any N° PO set of y. Then $F_N \subset N^{\circ}$ Int(N° cl (F_N)) and N° Int(N° cl (F_N)) is N° RO set in y. Since η is N° -Sbc continuous, by Theorem 3.7, we have $\eta^{-1}(N^{\circ}$ Int((N° Cl (F_N)) is N° -bc closed set in X and hence we have $\eta^{-1}(F_N) \subset \eta^{-1}(N^{\circ}$ Int((N° Cl (F_N)) = N° -bc Cl ($\eta^{-1}(N^{\circ}$ Int((N° Cl (F_N)).

Proposition 3.14 : A function $\eta : (\tilde{U}, N_R(x)) \to (\tilde{V}, N_R(y))$ is N^o Sbc-continuous if $\eta^{-1}(B_N) \subseteq N^o$ -bc Cl ($\eta^{-1}(N^o \text{Int}(\text{SCl }(B_N))$ for each N^o PO set B_N of y.

Proof: Let B_N be any N° PO set of y. Then $B_N \subseteq N^{\circ}$ Int(N° cl (B_N)) and N° Int(N° cl (B_N)) is N° RO set in y. Since η is N° -Sbc continuous, by Theorem 3.7, we have $\eta^{-1}(N^{\circ}$ Int((N° Cl (B_N)) is N° -bc closed set in X and hence we have $\eta^{-1}(B_N) \subseteq \eta^{-1}(N^{\circ}$ Int((N° Cl (B_N)) = N° -bc Cl ($\eta^{-1}(N^{\circ}$ Int((N° Cl (B_N))).

References

- Andrijevic, "On b-open sets in topological spaces", Math. Vesnik , 48(1), (1996), 59-64.
- A.S.Mashhour, ME.Abd El Mousef and S.N.El peeb, "On Pre continuous and weak pre continuous mappings", proc.Math & Phys.Soc., Egypt. 53 (1982), 47-53.
- A.Vadivel, J.Sathyaraj, M.Sujatha & M.Angayarkarasi, "Generalizations of nano θ closed sets in nano topological spaces", Journal of information and computational science, 9, (11), -2019.
- C.Indirani, M.Parimala &S,Jafari, "On nano b -open sets in nano topological spaces ", Jourdan journal of mathematics and statistics(IJMS) 9(3),2016,173-184.
- D.A.Mary and Arockiarani .A, "On Characterizations of nano rgb-closed sets in nano topological spaces". Int.J.Mod.Eng.Res. 5(1) (2015) 68-76.
- D.A.Mary and Arockiarani .A, " On b-open sets and bcontinuous functions in nano topological spaces " , Int.J.Innov.Res Stud.,3(11) (2014) 98-116.
- H.Z.Ibhrahim, "Bc -open sets in topological spaces", Advances in pure mathematics, 2013, 3,34-40.
- K.F.Porter, "Regular open sets in topology", Int.Jour.ofMath.and Math. Sci.,2(1996) ,299-302.
- M.Lellis Thivagar, C.Richard , "On nano Continuity," Math.Theory Model. 7(2013) 32-37.
- Mohammed M.Khalaf and Kamal N.Nimer, "Nano Ps open sets and Ps continuity, "Int.J.of. contemp.Math.Sciences, Vol.10, pp.1-11, 2015.
- Levine, "Semi open sets and semi continuity in Topological Spaces", Amer.Math.Monthly, 70(1963), 36-41.
- P.Sathishmohan , V,Rajendran, P.K.Dhanasekaran and Brindha.S., "Further properties of nano pre T_0 space, nano pre T_1 space and nano pre T_2 spaces" , Malaya Journal of Mathematik, 7,(1),2019, 34-38.
- Raad Aziz Al-Abdulla, Ruaa Muslim Abed, "On Bc open sets in Topological Spaces", International Journal of Science and Research, 3,(10), (2014).

Cite this article as: R.Raman, S.Pious Missier and E.Sucila, (2024). On NSBc Continuous Functions in Nano Topological Spaces, International Journal of Emerging Knowledge Studies. 3(12), pp.1035-1040.

https://doi.org/10.70333/ijeks-03-12-016